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Abstract

Background: Long-term benefits of combination antiretroviral therapy (cART) initiation during primary HIV-1 infection are
debated.

Methods: The evolution of plasma HIV-RNA (432 measurements) and cell-associated HIV-DNA (325 measurements) after
cessation of cART (median exposure 18 months) was described for 33 participants from the Zurich Primary HIV Infection
Study using linear regression and compared with 545 measurements from 79 untreated controls with clinically diagnosed
primary HIV infection, respectively a known date for seroconversion.

Results: On average, early treated individuals were followed for 37 months (median) after cART cessation; controls had 34
months of pre-cART follow-up. HIV-RNA levels one year after cART interruption were 20.8 log10 copies/mL [95% confidence
interval 21.2;20.4] lower in early treated patients compared with controls, but this difference was no longer statistically
significant by year three of follow-up (20.3 [20.9; 0.3]). Mean HIV-DNA levels rebounded from 2 log10 copies [1.8; 2.3] on
cART to a stable plateau of 2.7 log10 copies [2.5; 3.0] attained 1 year after therapy stop, which was not significantly different
from cross-sectional measurements of 9 untreated members of the control group (2.8 log10 copies [2.5; 3.1]).

Conclusions: The rebound dynamics of viral markers after therapy cessation suggest that early cART may indeed limit
reservoir size of latently infected cells, but that much of the initial benefits are only transient. Owing to the non-randomized
study design the observed treatment effects must be interpreted with caution.
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Introduction

The benefits of early initiation of combination antiretroviral

treatment (cART) during primary HIV-1 infection (PHI) (hence-

forth ‘‘early cART’’) are controversial, because results from

previous studies do not seem to be consistent [1,2,3,4]. While

some authors reported clinical benefits of early cART in terms of

higher CD4 cell counts relative to controls [5,6], these findings
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could not be confirmed by others [7,8,9]. Also, discrepant reports

exist on the impact of early cART on post-treatment viral

setpoints, with some studies corroborating [5,6,10,11,12,13] and

others rejecting the hypothesis of a possible sustained decrease in

viral setpoint following treatment with cART during PHI

[14,15,16,17,18]. These studies are difficult to compare however,

and there are multiple explanations for the discrepancies, which

include differences in timing of cART initiation, type and duration

of initial cART, as well as in the choice of controls and the length

of follow up [19]. Emerging randomized clinical trials also point

toward a beneficial effect of early therapy during acute infection

[20,21].

Moreover, while short to intermediate impacts of early therapy

on viral markers are relatively well studied, there are comparably

few data on the long term evolution of HIV-RNA and HIV-DNA

after cessation of early cART [5,14]. Previously we have reported

differences in HIV-RNA and HIV-DNA setpoints measured after

cessation of initial cART between patients diagnosed with PHI

who have either started therapy within 60 days of infection (early

starters) or after 60 days (later starters) [22]. This analysis included

HIV-RNA values measured up to one year after therapy cessation.

Here, we aim to describe the long-term dynamics and the

correlation of HIV-RNA and -DNA markers before, during and

after treatment started at time of PHI.

Methods

Ethical Statement
The Zurich Primary HIV Infection Study (ZPHI) has obtained

written informed consents from their patients, and the study

protocol was approved by the ethics committee of the University

Hospital of Zurich. The Swiss HIV Cohort Study (SHCS) has

obtained written informed consent from its participants and has

been approved by ethical committees of all participating

institutions, which are the Kantonale Ethikkommission (KEK)

Bern, Bern; the Ethikkommission beider Basel (EKBB), Basel; the

comité d’éthique du département de médecine, Hôpitaux

Universitaires de Genève, Geneva; the commission d’éthique de

la recherche clinique, Faculté de Biologie et de Médecine,

Université the Lausanne, Lausanne; the Comitato etico canto-

nale, Republica e Cantone Ticino, Bellinzona; the Ethikkommis-

sion des Kantons St. Gallen, St. Gallen; and the Kantonale

Ethikkommission (KEK), Gesundheitsdirektion Kanton Zürich,

Zurich.

Patients
Patients presenting with acute or recent HIV-1 infection were

enrolled in the Zurich Primary HIV Study (www.clinicaltrials.gov,

NCD00537966) [23,24] between November 2002 and July 2007.

This study is described in details elsewhere [22,24]. In brief,

acutely and recently HIV-1 infected individuals are offered

standard first line cART [25], and after one year of viral

suppression below detection limits they can elect to stop therapy.

Further inclusion criteria for this analysis are outlined in Figure 1.

The control group of untreated, chronically infected patients was

selected from the Swiss HIV Cohort Study (described in [26]) and

consisted of patients with a positive HIV test, clinically diagnosed

primary HIV infection and at least 2 HIV-RNA measurements 90

days after the first positive HIV test (to ensure that these patients

were no longer in the acute phase). Of those, approximately 41%

also had negative and positive HIV-tests performed within 180

days available. A full description of the estimation procedures for

the infection date of early treated individuals is given in [22].

For the untreated controls, the infection was assumed to have

occurred 30 days prior to the diagnosis of the primary HIV

infection.

Although formally two independent studies, all ZPHI partici-

pants included in this analysis were also enrolled in the SHCS,

and clinical data and laboratory measurements are exchanged

anonymously between studies. The ZPHI exclusively recruits

participants from the Zurich region, and controls were selected

from the remaining SHCS study centers, where early antiretroviral

therapy during primary HIV infection was not standard of care at

time of study enrolment. Our study design therefore resembles that

of a multi-centric study, in which one center exclusively receives

the intervention and all other centers recruit controls. Noteworthy,

the SHCS is highly representative for the HIV-1 epidemic

in Switzerland and encompasses approximately 50% of all HIV-

infected, 75% of all individuals receiving antiretroviral therapy,

and 75% of all individuals with a CDC stage C diagnosis [27].

The methods for collection of HIV-DNA data are described

elsewhere [22,28,29]. HIV-RNA in plasma was measured using

Amplicor HIV-Monitor version 1.5 (Roche Diagnostics, Basel,

Switzerland).

Statistical methods
Pre-treatment dynamics of HIV-RNA and -DNA were

evaluated with linear regression models including linear and

quadratic terms (to account for possible non-linear dynamics).

Patients only contributed one data point per analysis. The final

model was selected based on the basis of adjusted R2 values.

The on-treatment dynamics of HIV-RNA was only analyzed

descriptively, because it has been extensively studied before [30]

and the HIV-RNA assay detection limit of 50 copies/mL

precludes sensible modeling analyses of long term decays on

therapy. Decay rates of HIV-DNA during treatment were

modeled as a two phase decay according to the following

equation: V(t)~P1e-d1tzP2e-d2t, where d1 and d2 are the first-

and second-phase decay rates and P1 and P2 are intercepts. To

account for the fact that patients contributed several measure-

ments to the analysis we used a non-linear mixed model with

random slope and random intercept.

Longitudinal analyses of the evolution of HIV-RNA and -DNA

markers after therapy cessation included several measurements per

patient and were therefore performed by using linear mixed models

with random slope and random intercept. All measurements taken

between 30 days after cART stop and 18 months (corresponding to

the median follow-up time for HIV-DNA measurements) were used

in this analysis. Time since therapy cessation was modeled linearly,

with different linear slopes for early starters and untreated controls,

or as restricted cubic splines with three knots. The final model was

selected by comparison of the Akaike information criterion.

In addition, long term evolution of off-therapy HIV-RNA

measurements were compared between patients with early cART

initiation and untreated control patients from the SHCS. All

measurements taken 30 days after therapy cessation until therapy

resumption (early starters) or 90 days after the first positive HIV test

until therapy initiation (control group) were considered in the

analysis. Data were analyzed with linear mixed models including time

as a restricted cubic spline with three knots. Because the magnitude of

HIV-RNA is linked with the speed at which patients will start therapy

through CD4 cell decline [31], this can introduce a bias into the

analysis [19]. For example, individuals with high viral setpoints may

have a steeper CD4 decline and may tend to resume therapy earlier,

thus lowering the average population viral setpoint. We dealt with this

problem by artificially censoring our analysis after 36 months of

follow-up, which corresponds to the median post-treatment follow-up
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time, and, in addition, by using joint mixed models on the full data

set, which adjusts longitudinal analyses of viral markers for factors

that are associated with the time until therapy is resumed or initiated,

such as CD4 cell counts [32].

Statistical analyses were performed using R 2.10 (www.r-

project.org) with the NLME library (version 3.1–89) and the JM

package (version 0.6.1) [32], and Stata 11.1/SE (Stata Corp.

College Station, TX). All analyses were performed on log10

transformed data. Model assumptions were checked by plotting

fitted values versus residuals and residuals against time. The level

of significance was set at p,0.05, and all p-values were two-sided.

Results

Patient population
HIV-DNA was measured from 67 patients who started cART

within the first four months of their HIV infection. Of these, 59 were

finally included in the HIV-DNA decay study and 33 in the cART

interruption analysis, respectively (Figure 1). In the full data set of 67

patients the majority of individuals were males who had acquired

HIV through homosexual contacts and were infected with HIV

subtype B (n = 44, 66%). A further subgroup of notable size (n = 14,

21%) consisted of individuals with heterosexual mode of HIV

acquisition and infection with HIV subtypes other than B

(predominantly CRF_01, n = 8). All patients initiated cART with

protease inhibitors (65 lopinavir, 2 unboosted nelfinavir) and two

nucleoside reverse transcriptase inhibitors. Median [interquartile

range] baseline CD4 counts and HIV-RNA measurements were

454 cells/mL [407; 500] and 5.3 log10 copies/mL [5.1; 5.5],

respectively. Median time from infection to the first laboratory

measurements (CD4, HIV-RNA, HIV-DNA) and cART initiation

was 1.6 months [1.4; 1.8]. The median treatment duration for those

individuals who stopped therapy was 18.2 months [15.6; 20.5].

Dynamics of HIV-DNA and HIV-RNA before early cART
initiation

As illustrated by Figure 2A, the majority of baseline measure-

ments for the 67 patients were taken early after infection at a time

Figure 1. The algorithm used to determine the inclusion (in boxes with continuous bounds) and exclusion (in boxes with
interrupted bounds) in pre-defined sub-analyses to explore the effect of early started antiretroviral therapy in primary HIV-
infected individuals.
doi:10.1371/journal.pone.0027463.g001

Viral Marker Dynamics after Early cART

PLoS ONE | www.plosone.org 3 November 2011 | Volume 6 | Issue 11 | e27463



when HIV viral loads are typically very high in most patients. This

dynamic appeared to be non-linear in the case of HIV-RNA,

because a regression with a linear slope and a non-linear

component (i.e. the square of time since infection) showed a

better fit to the data (R2 = 0.25, F-test p,0.001) than a model with

a linear component only (R2 = 0.16, F-test p,0.001). In contrast,

the decrease of log10 HIV-DNA over time was better described by

a simple regression with a linear decay (R2 = 0.02, F-test p,0.13

vs. R2 = 0.01, F-test p,0.26 when including a non-linear

component, Figure 2B). Despite the distinct dynamics of HIV-

RNA and HIV-DNA, we observed a moderate correlation

between these two markers, as shown in Figure 2, panel C.

Dynamics of HIV-DNA and HIV-RNA on therapy
The dynamics of HIV-DNA and -RNA on therapy was

evaluated for the 59 patients with successful cART for at least

180 days. As expected, HIV-RNA dropped rapidly to undetect-

able levels during treatment (Figure 2D). In contrast, the decay of

HIV-DNA occurred much slower. The non-linear modeling

analysis shows a two-phase exponential decay (Figure 2E), which

had a better model fit than simple one phase decay models. This

analysis indicated a fast initial decay of HIV-DNA of 1.22 log10

[95% confidence interval 1.04; 1.40] with a half-life of 116 days

[93; 153]. The second phase decay was much slower, and decay

rates were no longer significantly different from zero (NLMM:

2561025 [2261024; 661025]). Thus, HIV-DNA levels re-

mained stable around 2.04 logs10 DNA [1.81; 2.27] after

approximately 12 months of therapy (Figure 2E).

Interestingly, one individual had several consecutive undetect-

able HIV-DNA levels during therapy. This male person acquired

HIV through heterosexual contacts, was infected with subtype

CRF01_AE and had very low baseline HIV-DNA (18 copies/106

Figure 2. Time courses of and correlations between HIV-DNA and HIV-RNA measurements. Figure 2 depicts time courses of and
correlations between HIV-DNA and HIV-RNA measurements obtained before (panels A, B, C), during (panels D, E) and after early antiretroviral therapy
initiation (panels F, G, H) in primary HIV-infected individuals. Panels A, B and C show the time dependency of pre-treatment HIV-DNA and -RNA
measurements (n = 67 patients). The curves show fits from linear regression including linear and quadratic terms. Final model selection was based on
adjusted R2 values. Panel A plots plasma HIV-RNA (log10 copies/mL) against time since infection, panel B shows Cell associated HIV-DNA (log10 copies/
million cells), and panel C displays the correlation analysis of pre-treatment HIV-RNA and HIV-DNA. Panels D and E depict the dynamics of HIV-RNA
(n = 700 measurements) and HIV-DNA (n = 737 measurements) during treatment with combination antiretroviral therapy in 59 patients. Panel D
shows longitudinal HIV-RNA measurements during treatment. Note that undetectable HIV-RNA measurements were artificially set to 0. Panel E shows
results from non-linear modeling analyses of the longitudinal course of HIV-DNA under antiretroviral therapy. Panels F and G show the evolution of
viral marker pairs (HIV-RNA and HIV-DNA; n = 203 measurements) up to 18 months after therapy cessation (n = 33 patients). Curves were fitted with
linear mixed models with random intercepts and random slopes. Panel H displays the correlation between post-therapy HIV-RNA and HIV-DNA
measurements. The correlation coefficient shown is the median of 33 individual Spearman correlation analyses for each patient.
doi:10.1371/journal.pone.0027463.g002
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cells) and HIV-RNA (609 copies/mL), measured 34 days after

HIV infection. HIV-DNA and HIV-RNA measurements became

detectable again after therapy cessation (10 copies/106 cells and

100 copies/mL, respectively). However, approximately one year

after treatment cessation this individual’s HIV-RNA reached 3000

copies/mL and attained 18000 copies/mL after two years.

Correlation of HIV-RNA and HIV-DNA up to 18 months
after cessation of antiretroviral therapy

Next we studied the rebound of HIV-RNA and -DNA after

cessation of cART and the correlation of these two viral markers.

For this analysis, all measurements taken 30 days after therapy

stop and up to 18 months later were considered. The best curve fit

for HIV-RNA was a cubic spline with knots placed at 1.2, 6.4, and

14.4 months, yielding a curve with a steep initial increase and a

relatively flat region after 9 months (Figure 2F). The best-fit curve

for HIV-DNA, based on a linear and a quadratic term, looked

very similar to the dynamics in HIV-RNA (Figure 2G). Conse-

quently, the correlation of HIV-RNA and HIV-DNA measure-

ments was quite strong in the post-therapy phase (Figure 2H).

When performing separate Spearman correlation analyses for

each patient, the median Spearman correlation coefficient over all

individuals was 0.71, which was significantly different from 0 by

the Wilcoxon signed rank test (p = 0.003).

We further aimed to find predictors for post-treatment HIV-

RNA levels. We hypothesized that the following parameters may

possibly have an impact: duration of antiretroviral therapy, timing

of therapy initiation (#60 after infection or later, as described in

[22]), and pre-treatment levels of HIV-DNA and CD4 cell counts.

Analyses were further adjusted for patient sex, age, ethnicity, and

mode of HIV-acquisition. As previously reported [22] and shown

in Table 1, the only parameter of interest showing statistical

significance in the multivariable model was timing of treatment:

individuals with antiretroviral therapy initiation #60 days after

infection (n = 24) tended to have lower post-treatment HIV-RNA

levels than patients with therapy start between 61 and 120 days

(n = 9). The appropriateness of the 60 day break point for this

analysis was further confirmed by use of fractional polynomial

regression (not shown) [33].

Long term evolution of viral markers
We also studied the long term evolution of HIV-RNA upon

cART cessation among patients with early cART initiation and

the untreated controls. Their characteristics are compared in

Table 2. Relevant differences were observed in the magnitude of

baseline CD4 with a 160 cells higher median value in the control

group and, as expected by design, in the frequency and timing of

therapy initiation. As shown in Figure 3A, HIV-RNA levels in

early cART initiators were generally below those from the control

group. Predictions from the best-fit model adjusted for age, sex,

ethnicity and mode of HIV acquisition indicate that after 1 year of

follow-up early starters on average had -0.74 log10 copies lower

HIV-RNA levels/mL ([95% confidence interval 21.17; 20.31],

p,0.001). This difference diminished over time, however, and

after 2 and 3 years was reduced to 20.42 ([20.91; 0.74],

p = 0.096) and 20.25 ([2.0.94; 0.43], p = 0.468) log10 copies HIV-

RNA/mL, respectively. While, overall, there was no difference in

rates of treatment initiation (controls, median time from first

positive HIV test +90 days to therapy start: 30 months) or

resumption (early treated individuals, median time after stop of

first therapy: 37 months, log rank p = 0.64), Cox proportional

hazard regression suggested an association of CD4 count levels at

baseline, which differed between early treated individuals and

controls, with the probability for therapy initiation (Table S1).

Nevertheless an extension of follow-up time to 48 months in

combination with a joint modeling approach of HIV-RNA

evolution and time to therapy initiation yielded almost identical

results (Table S2). Additional sensitivity analyses were performed

by including all control patients (n = 79) and only early treated

individuals with a therapy start within 60 days after infection

(n = 24), which was associated with lower viral load levels up to 18

months after therapy cessation in the analysis shown in Table 1, or

by restricting the control population to individuals who, in

addition to a clinical primary HIV diagnosis, also had negative

and positive HIV tests not longer than 180 days apart (n = 32).

Neither of these sensitivity analyses altered our conclusions,

because the shapes of HIV-RNA trajectories did not change

substantially (Table S2).

The dynamics of HIV-DNA over 36 months after therapy

cessation resembled those of HIV-RNA by showing an increase in

the initial phase from approximately 2 log10 copies/106 cells

(Figure 3B) after treatment stop to 2.62 log10 copies/106 cells

[95% confidence interval 2.36; 2.88] and remaining at a stable

level of approximately 2.7 log10 copies HIV-DNA/106 cells

thereafter (estimate for month 24: 2.73 [2.45; 3.02]; month 36:

2.75 [2.35; 3.15]). Of note, this plateau was similar to the average

of 9 randomly selected measurements of HIV-DNA from the

untreated control group (2.8 log10 copies HIV-DNA, [2.48; 3.11],

indicated by dotted line in Figure 3B). The joint modeling analysis

yielded a similar longitudinal post-therapy course for HIV-DNA in

early treated individuals (not shown).

Discussion

In this analysis we studied the evolution of HIV-RNA and HIV-

DNA measurements before (n = 67), during (n = 59) and after

antiretroviral therapy (n = 33) in individuals with therapy initiation

within 4 months after HIV infection. As our assessment of HIV-

DNA measurements sampled before therapy initiation has shown,

DNA levels declined during the first few weeks after infection,

although this decrease was far less pronounced than for HIV-

RNA. Moreover, only a moderate correlation between pre-

treatment HIV-RNA and HIV-DNA was observed, which

contrasts starkly with the strong correlation of these parameters

after therapy cessation. This suggests that, at the time of pre-

treatment data collection, the steady state of virus production and

decay was not yet established. Our observation that pre-treatment

HIV-DNA values were not predictive for post-treatment HIV-

RNA levels is consistent with this hypothesis.

While HIV-RNA measurements rapidly attained undetectable

levels after treatment initiation, HIV-DNA levels were much

slower to respond and, with the exception of one patient

(Figure 3B), never reached undetectable levels. On average a level

of 2 log10 copies HIV-DNA persisted despite a median exposure to

combination therapy with boosted protease inhibitors of 18

months, and we observed no evidence that a further extension

of therapy duration may yield any benefit in terms of HIV-DNA

reduction. This is not surprising given that the PBMC associated

DNA levels we measured during the treatment phase largely

reflect proviral DNA that is integrated into the host DNA and

exhibit a very long decay half life [34,35]. On a broader view, this

finding confirms conventional wisdom that latent HIV-DNA

reservoirs cannot be purged by currently available antiretroviral

therapies even when started very early [36].

After cessation of antiretroviral therapy, there was a slow

increase in HIV-DNA, which seemed to level off after

approximately 1 year. In contrast, there was an almost

instantaneous rebound from undetectable to detectable HIV-

Viral Marker Dynamics after Early cART
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RNA and a continuous rise in levels over the first 18 months after

treatment stop. However, when including follow-up data for up

to 36 months there was also evidence for a deceleration of

increase rates for HIV-RNA levels, similar to the dynamics of

HIV-DNA. Indeed, our statistical models suggest that, three years

post therapy, individuals who had undergone early treatment

almost attained the same HIV-RNA levels as untreated controls,

whereas in the first year after treatment stop HIV-RNA levels

were still notably different between early cART starters and

untreated controls. Similar rebound dynamics of post-treatment

HIV-RNA have previously been reported by other studies

[5,14,18].

Table 1. Predictors for post-therapy HIV-RNA levels collected up to 18 months after stop of antiretroviral therapy (included 203
HIV-RNA measurements from 33 patients). Time was modeled as a restricted cubic spline with three knots (coefficients not shown).

Univariable P-value Multivariable P-value

regression coefficient regression coefficient

[95% CI] [95% CI]

Male sex 0.29 [20.99 to 1.57] 0.656 20.90 [22.27 to 0.48] 0.202

White ethnicity (vs. non-white) 20.79 [22.59 to 1.00] 0.386 20.25 [21.86 to 1.37] 0.766

Age (per 10 years older) 20.21 [20.67 to 0.26] 0.381 0.41 [20.11 to 0.94] 0.124

Acquired HIV through homosexual contacts (vs.
heterosexual contacts)

0.94 [0.12 to 1.76] 0.025 1.37 [0.32 to 2.42] 0.01

CD4 cell count before therapy start (per 10 cells higher) 20.02 [20.04 to 0.01] 0.163 20.02 [20.04 to 0.01] 0.137

Log10 HIV-DNA before therapy start 0.45 [20.24 to 1.14] 0.204

Duration of initial treatment with combination
antiretroviral therapy (per month longer)

0.02 [20.05 to 0.08] 0.614

Treatment initiation ,60 days after HIV infection (vs. later) 20.84 [21.78 to 0.11] 0.082 21.01 [21.98 to 20.04] 0.041

doi:10.1371/journal.pone.0027463.t001

Table 2. Comparison of baseline characteristics for early treated individuals (n = 33) and untreated controls with a clinical
diagnosis of primary HIV infection (n = 79).

Early treated individuals Controls P-value

N 33 (100.0) 79 (100.0)

Age 39 [36;42] 37 [35;39] 0.311

Baseline CD4 count 499 [436; 561] 661 [606; 717] ,0.001

Baseline HIV-RNA 4.9 [4.5; 5.2] 4.9 [4.6; 5.1] 0.990

Ethnicity 0.704

Black 0 (0.0) 1 (1.3)

Other 2 (6.1) 2 (2.5)

White 31 (93.9) 76 (96.2)

Year of HIV-1 Infection 2004 [2003; 2004] 2005 [2004; 2005] 0.044

Clinical diagnosis of primary HIV infection 32 (97.0) 79 (100.0) 0.295

Mode of HIV-1 acquisition 0.327

Heterosexual 10 (30.3) 22 (27.8)

Homosexual 22 (66.7) 47 (59.5)

Other 1 (3.0) 10 (12.7)

Male sex 29 (87.9) 66 (83.5) 0.774

HIV Subtype ,0.001

CRF 01_AE 8 (24.2) 1 (1.3)

CRF 02_AG 0 (0.0) 5 (6.3)

B 22 (66.7) 55 (69.6)

Other 3 (9.1) 18 (22.8)

Time from infection to baseline (months) 20 [17;23] 6 [5;8] ,0.001

Ever started antiretroviral therapy 33 (100) 51 (64.6) ,0.001

Time to therapy initiation (months) 1.7 [1.5; 1.9] 40.5 [34.3; 46.6] ,0.001

The baseline for this analysis was set at 30 days after therapy cessation for the intervention group and at 90 days after the first positive HIV test for the control group.
doi:10.1371/journal.pone.0027463.t002
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The present study offers possible explanations for the differing

impact assessments of early therapy on post-treatment viral loads.

As indicated by our 18 month analysis (Table 1 and [22]) and data

from other studies [6,11] the timing of treatment initiation may be

of importance, with very early treatment initiation generally

yielding better outcomes in terms of lower HIV-RNA levels.

Furthermore, discrepant results may have arisen from differences

in post-therapy follow-up time for outcome assessment, with

shorter analysis time frames between 24 and 48 weeks after

therapy cessation more likely pointing towards a benefit of early

therapy [12,22,37], and studies following the HIV-RNA trajecto-

ries after therapy stop generally finding decreasing differences in

viral loads between early treated individuals and controls

[5,6,15,18]. The present analysis adds to these longitudinal

observations by specifically addressing statistical problems of

non-random censoring of follow-up, meaning that patients with

faster HIV-1 progression and potentially higher HIV-RNA loads

initiate therapy earlier, and confounding by severity of primary

HIV-1 infection symptoms [19,37].

Some limitations of this study should be noted, most

importantly that our analysis is observational and therefore

treatment strategies were not subject to randomization. Our

findings must therefore be interpreted with caution. Systematic

differences between the group of early treated individuals and

untreated controls may have affected our analysis, such as the

severity of the acute retroviral syndrome, which has been

correlated with the magnitude of setpoint viral load. If heavily

symptomatic primary infected individuals were more likely to

receive early therapy, this could possibly increase the group

average of post-therapy viral loads of early treated individuals,

therefore diminishing the true treatment effect. A second

limitation concerns differences regarding the time axes for early

treated individuals and controls. By design, the early treated

individuals will have been infected for a longer period of time (20

months) than controls (6 months) in the treatment effects analysis,

because early starters will in minimum have received 6 months of

therapy, whereas the baseline in untreated controls was set at 90

days after the first positive HIV test. While this systematic

difference could have confounded our analysis, for instance via a

time dependency of immune response or co-receptor switch, a

large effect on the observed treatment effects seems implausible.

Additionally, diagnoses of primary HIV infections are not based

on a standardized protocol within the SHCS, and thus infection

date estimates from untreated controls are less precise than those

from early treated individuals. Restricting this imprecision to 3

months by only including controls with negative and positive HIV

tests within 6 months (n = 32) in a sensitivity analysis had little

impact on our estimates of treatment effects, however (Table S2).

Taken together, these data suggest that the initiation of

antiretroviral therapy during PHI may lead to reductions of post-

therapy HIV-RNA and HIV-DNA levels, but further demonstrate

that these initial benefits may be waning over time. The major

mechanism behind our finding is most likely the limited size of the

long-lived latent reservoir [38,39,40] by an abrogated establishment

of this reservoir by early cART, as has been shown by viral

outgrowth assays [26], by profound depletion of transcriptionally

active cells [29] and by reduced amounts of proviral DNA in PBMC

[22]. The post-treatment dynamics of viral markers uncovered in

the current analysis are indeed suggestive for such an effect of early

therapy. However, these analyses also show that the establishment

of reservoirs is merely postponed: After approximately 12 and 36

months, HIV-DNA and HIV-RNA levels resembled those from

untreated chronic control patients. Given the transient nature of

effects on viral markers, the current lack of ways to exploit these

reductions in HIV-RNA and HIV-DNA for patient benefit, and

against the background of recent findings of detrimental effects of

viral replication on morbidity and mortality [41,42] these data

suggest that therapy resumption in early treated individuals should

not be deferred for too long [25].

Supporting Information

Table S1 Factors associated with treatment resumption
(early treated individuals, n = 33) or treatment initiation
(controls, n = 79) in univariable and multivariable Cox
regression models.

(DOC)

Table S2 Estimates of HIV-RNA levels at 12, 24, and 36
months after baseline from linear mixed models and
joint models. Estimates of difference in HIV-RNA between

early starters and controls that printed in bold face are statistically

significant at the 5% level.

(DOC)

Figure 3. Long-term evolution of viral markers. Panel A displays the evolution of HIV-RNA measurements up to 36 months after therapy
cessation in 33 individuals with therapy initiation during PHI (n = 432 measurements, light grey symbols) and 79 chronically infected participants of
the Swiss HIV Cohort Study (n = 545 measurements, dark symbols). Panel B shows longitudinal HIV-DNA measured in early starters (n = 325
measurements). Note that the dotted line represents the average of 9 randomly selected cross-sectional measurements from control patients.
doi:10.1371/journal.pone.0027463.g003
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