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Background. Metabolic complications, including cardiovascular events and diabetes mellitus (DM), are a major
long-term concern in human immunodeficiency virus (HIV)–infected individuals. Recent genome-wide association
studies have reliably associated multiple single nucleotide polymorphisms (SNPs) to DM in the general population.

Methods. We evaluated the contribution of 22 SNPs identified in genome-wide association studies and of
longitudinally measured clinical factors to DM. We genotyped all 94 white participants in the Swiss HIV Cohort
Study who developed DM from 1 January 1999 through 31 August 2009 and 550 participants without DM. Analyses
were based on 6054 person-years of follow-up and 13,922 measurements of plasma glucose.

Results. The contribution to DM risk explained by SNPs (14% of DM variability) was larger than the con-
tribution to DM risk explained by current or cumulative exposure to different antiretroviral therapy combinations
(3% of DM variability). Participants with the most unfavorable genetic score (representing 12% and 19% of the
study population, respectively, when applying 2 different genetic scores) had incidence rate ratios for DM of 3.80
(95% confidence interval [CI], 2.05–7.06) and 2.74 (95% CI, 1.53–4.88), respectively, compared with participants
with a favorable genetic score. However, addition of genetic data to clinical risk factors that included body mass
index only slightly improved DM prediction.

Conclusions. In white HIV-infected persons treated with antiretroviral therapy, the DM effect of genetic variants
was larger than the potential toxic effects of antiretroviral therapy. SNPs contributed significantly to DM risk, but
their addition to a clinical model improved DM prediction only slightly, similar to studies in the general population.

Diabetes mellitus (DM) is a major long-term concern

in human immunodeficiency virus (HIV)–infected

persons [1, 2], given their increased risk for acceler-

ated atherogenesis and premature cardiovascular dis-

ease [3, 4] and the pathogenetic association of DM
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with these conditions. The pathogenesis of DM in

HIV-infected persons is incompletely understood. DM

risk factors that are well documented in the general

population, including advancing age, male sex, non-

white ethnicity, and obesity, are also DM risk factors

in HIV-infected persons [5–8]. Additional factors that

may contribute to insulin resistance and DM in HIV-

infected persons include dyslipidemia, lipodystrophy,

advanced immunosuppression [5, 8], and the expo-

sure to certain antiretroviral therapy (ART) agents [6].

Both the cumulative and current exposure to thy-

midine analogue nucleoside reverse-transcriptase in-

hibitors (NRTIs) and protease inhibitors (PIs) have

been associated with an increased DM risk, whereas

tenofovir, abacavir, and nonnucleoside reverse-tran-
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Table 1. Baseline Characteristics of the Study Participants

Characteristic

Participants

All
(n p 644)

With new
onset DM
(n p 94)

Without new
onset DM
(n p 550)

Age, median (IQR), years 40 (35–48) 45.5 (38.3–54) 39 (34–46)
BMI, median (IQR) 23.2 (20.8–25.9) 25.8 (23.1–27.5) 22.8 (20.6–25.2)
Male sex 512 (79.5) 81 (86.2) 431 (78.4)
Presumed mode of HIV transmission

Men who have sex with men 292 (45.3) 36 (38.3) 256 (46.5)
Heterosexual 191 (29.7) 35 (37.2) 156 (28.4)
Injection drug use 137 (21.3) 18 (19.1) 119 (21.6)
Unknown or other 24 (3.7) 5 (5.3) 19 (3.5)

ART group
No ART 101 (15.7) 12 (12.8) 89 (16.2)
NRTI only 77 (12) 15 (16) 62 (11.3)
NRTI+PI 227 (35.2) 40 (42.6) 187 (34)
NRTI+NNRTI 198 (30.7) 18 (19.1) 180 (32.7)
NRTI+NNRTI+PI 41 (6.4) 9 (9.6) 32 (5.8)

Value during follow-up period
CD4+ T cells, median (IQR), cells/mL 540 (368–763) 385 (250–594) 562 (400–782)
HIV viral load !400 copies/mL 427 (66.3) 49 (52.1) 378 (68.7)
Hepatitis C virus coinfection 185 (28.7) 24 (25.5) 161 (29.3)

NOTE. Data are no. (%) of participants, unless otherwise indicated. ART, antiretroviral therapy; BMI, body
mass index; DM, diabetes mellitus; HIV, human immunodeficiency virus; IQR, interquartile range; NNRTI, non-
nucleoside reverse-transcriptase inhibitors; NRTI, nucleoside reverse-transcriptase inhibitors; PI, protease
inhibitor.

scriptase inhibitors (NNRTIs) have not been linked to DM

risk, in longitudinal, observational studies [5, 6, 8, 9].

DM is known to have a strong heritable component [10].

Recent genome-wide association studies (GWAS) have pro-

vided a comprehensive inventory of common single nucleotide

polymorphisms (SNPs) reproducibly associated with DM in

the general population [11–20]. The aim of the present study

was to examine the contribution of 22 SNPs identified in GWAS

of the general population to the risk of DM in HIV-infected

individuals. Because these GWAS have been conducted almost

exclusively in the white population, our study population in-

cluded only participants self-identified as white. We assessed

the quantitative impact of genetic background and relevant

clinical factors, most notably body mass index (BMI) and ART

exposure, on DM risk and compared the relative importance

of SNPs and clinical factors.

MATERIALS AND METHODS

Participants, DM diagnosis, and ART and other medication

exposure. Study participants were followed up in the Swiss

HIV Cohort Study (SHCS) [21] during the study period (1

January 1999 to 31 August 2009). The SHCS Genetics Project

was approved by the ethics committees of participating centers.

Participants gave written, informed consent for genetic testing.

The genotyped study population ( ) consisted of all 94n p 644

white SHCS participants who developed new-onset DM during

the study period, the majority of whom were included in a

previous DM epidemiological study [8], and 550 randomly

selected white SHCS participants with 12 years of ART exposure

who did not develop DM. Participants were previously geno-

typed for a genetics-dyslipidemia study [22]. DM was diagnosed

in accordance with the criteria of the Expert Committee on

the Diagnosis and Classification of DM [23], with confirmed

plasma glucose level cut-off values of 17.0 mmol/L (fasting) or

111.1 mmol/L (nonfasting) [8, 24].

SHCS participants have routine biannual follow-ups with

measurements of weight, waist and hip circumference, serum

lipids, and glucose. Antiretroviral agents are recorded with start

and stop dates in the SHCS database. ART exposure was as-

sessed at the time of DM diagnosis or, for participants without

new-onset DM, at the end of the study period. Current ex-

posure to the following ART groups was assessed as described

in a previous analysis of the SHCS [8]: (1) NRTI only, (2) NRTI

plus PI, (3) NRTI and NNRTI without PI, and (4) NRTI and

NNRTI with PI. In an a priori defined sensitivity analysis, cu-

mulative exposure in years to each of the 4 ART groups was

considered, normalized to each participant’s follow-up dura-

tion [5, 6, 9].
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Figure 1. Influence of single nucleotide polymorphisms (SNPs) on diabetes mellitus (DM) risk with adjustment for nongenetic variables. Results are
represented as the estimated effect and 95% confidence interval on the incidence rate ratio (IRR) of new-onset DM. *SNPs retained in model m1
( ).n p 4

Genetic variants and genotyping. The 22 genetic variants

selected for the study were associated with DM in GWAS that

were conducted in the general population and that were pub-

lished as of February 2009: GCKR, FTO, HNF1B, TCF7L2,

SLC30A8, HHEX, EXT2/ALX4/LOC387761, CDKN2A/B,

IGF2BP2, CDKAL1, KCNJ11, PPARG, WFS1, KCNQ1, JAZF1,

CDC123/CAMK1D, TSPAN8/LGR5, THADA, ADAMTS9,

NOTCH2, MTNR1B (2 SNPs) (Table A1, online only). Ge-

notyping was performed by TaqMan allelic discrimination with

TaqMan SNP genotyping assays predesigned by Applied Bio-

systems. Results were entered in the central SHCS genetic da-

tabase without knowledge of glucose values or DM status.

Statistical analysis. The incidence rate of new-onset DM

was defined as the number of cases divided by the total number

of person-years of follow-up. Follow-up was from the first

SHCS visit after 1 January 1999 (baseline) to the date that DM

was first diagnosed, death, or last SHCS visit, whichever oc-

curred first. The incidence rate was analyzed by means of a

Poisson regression model with log-link function. In a basic

model, we considered clinical variables only. Variables were ei-

ther time dependent, including ART group, BMI category

(!18.5, 18.5–25, or 125), CD4+ T cell count (square root of

cells/mL) [8], serum high-density lipoprotein (HDL)–choles-

terol (mmol/L), and triglycerides (mmol/L), or time fixed, in-

cluding sex and age (per 10 years) at baseline. Time-dependent

variables entered the model as the most recent information

available at each follow-up visit. Each SNP was treated as a

categorical variable having 2 levels (2 reference alleles versus

�1 variant allele). We assumed an additive mode of inheritance.

Two separate genetic model–building strategies were compared.

First, starting with the basic model and adding the SNPs step-

by-step, a final multivariable model 1 (m1) was selected by

forward stepwise regression based on the Akaike information

criterion. Second, given the prior validation of the SNPs in

GWAS [11–20], all SNPs were added to the basic model to

build model 2 (m2).

The relative contribution of clinical and genetic variables to

DM risk at the level of the study population was assessed by

analyzing deviance, a measure for goodness-of-fit when as-

sessing categorical end points, such as DM [25]. To assess the

cumulative contribution of SNPs to DM risk at the level of the

individual study participant, a genetic score was generated on

the basis of the number of DM risk alleles carried. Study par-

ticipants were then distributed as evenly as possible into 4 risk

groups, according to the number of risk alleles. The genetic

score was computed separately for m1 and m2, and the DM
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Figure 2. Impact of genetic and key nongenetic variables on new-onset diabetes mellitus (DM) in the final, multivariable analysis (model m1).
Results are represented as the estimated effect and 95% confidence interval on the incidence rate ratio (IRR) of new-onset DM for the genetic variants
(black dots), clinical variables (gray triangles), and type of antiretroviral therapy (ART) (gray squares). The estimated effects are relative to a 41.7-
year-old woman with normal body mass index (18.5–25), CD4+ T cell count of 484 cells/mL, no treatment with ART, a serum high-density lipoprotein
(HDL)–cholesterol of 1.23 mmol/L, serum triglycerides of 2.62 mmol/L, and reference alleles at all genetic loci tested. The age effect is with respect
to an increase of 10 years, and the CD4 effect is with respect to a unit increase of the number of CD4 cells/mL on the square root scale. Serum
HDL and triglyerides are with respect to a unit increase (original scale). NNRTI, nonnucleoside reverse-transcriptase inhibitors; NRTI, nucleoside reverse-
transcriptase inhibitors; PI, protease inhibitor.

incidence rate ratio according to genetic score was adjusted for

the variables contained in the basic model. Improvement in

area under the receiver operating characteristic (ROC) curves

was assessed after adding genetic information to the basic model

[26]. For this, new-onset DM was predicted at each time point

during the study period by considering clinical variables and

the genetic background, which was entered as either the 4 SNPs

retained in m1, all 22 SNPs (m2), or the calculated genetic

score.

Additional sensitivity analyses included the consideration of

current and cumulative azidothymidine (AZT) and stavudine

(D4T) exposure as the treatment variable instead of ART group,

and hepatitis C virus (HCV) coinfection, defined as a positive

serology or detectable HCV RNA during follow-up. All statis-

tical analyses were performed using R, version 2.9.2 [27].

RESULTS

Characteristics of participants, ART, and SNPs. Of 661 study

participants, those with unsuccessful genotyping ( ) orn p 4

with prevalent DM at the beginning of the study period

( ) were excluded. Results are therefore based on 644n p 13

participants whose characteristics are shown in Table 1. There

were 94 participants with new-onset DM. They were older and

more likely to be men and they had a higher baseline BMI and

a lower CD4+ cell count, compared with the 550 participants

without new-onset DM, as previously reported [8]. In addition,

they were more likely to be treated with PI-containing ART

and less likely to be receiving NNRTI-containing ART. The

median number of plasma glucose measurements per partici-

pant was 19 (interquartile range [IQR], 15–26), and the median

number of ART modifications per participant was 5 (IQR, 3–

8), during a median follow-up duration of 9.7 years (IQR, 8.6–

9.9 years). Cumulative follow-up for all participants was 6054

person-years, and 13,922 measurements of plasma glucose were

analyzed. At the time of DM diagnosis, 12 participants (12.8%)

had never been exposed to ART and 11 previously ART-treated

participants (12%) were not receiving ART. Minor allelic fre-

quencies were similar to previous reports in ethnically similar

populations (Table A1, online only). All SNPs in the partici-

pants without DM ( ) were in Hardy-Weinberg equi-n p 550

librium ( ).P 1 .001

Factors contributing to new-onset DM. Increasing BMI,

age, and triglycerides were associated with DM risk ( ),P 1 .001

as were decreasing HDL-cholesterol ( ) and CD4+ cellP ! .01

count ( ). The DM effects of the 22 interrogated SNPsP p .02

are shown in Figure 1. In the final, multivariable model m1,

adjusted for all clinical and genetic variables, 4 SNPs were re-

tained (rs5219, rs8050136, rs7903146, and rs1801282) (Figure
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Figure 3. Distribution of diabetes mellitus (DM) risk alleles in partic-
ipants with new-onset DM (black bars) and participants without DM
(white bars). A, results according to model m1 in which 4 single nucleotide
polymorphisms (SNPs) were retained. B, results according to model m2
in which all 22 SNPs were considered.

2). Sensitivity analysis showed essentially unchanged results

when considering cumulative instead of current ART exposure

(Appendix A, online only).

Relative contribution of genetic and clinical factors.

In the basic model, 30% of reduced residual deviance was ex-

plained by BMI, 19% by age, 9% by the CD4+ cell count, 15%

by serum HDL-cholesterol, 9% by serum triglycerides, and 3%

by the ART group. Adding the 4 SNPs retained in m1 to the

basic model further reduced the residual deviance by 14%

( ). Results were similar when all 22 SNPs were addedP ! .001

to the basic model (model m2; data not shown).

DM risk according to genetic score. Two separate genetic

scores were calculated on the basis of the number of DM risk

alleles carried by each participant. First, applying model m1 (4

SNPs), the genetic score ranged from 0 to 8 for a diploid

genome. Participants were divided into 4 risk groups according

to their genetic score, which corresponded to the presence of

0–3, 4, 5, or 6–8 DM risk alleles (Figure 3A). Applying model

m2 (22 SNPs), the genetic score groups corresponded to the

presence of 0–22, 23–24, 25–26, or 27–44 risk alleles (Figure

3B). With use of either genetic score, participants with new-

onset DM were more likely to be in the upper 2 genetic score

groups.

With use of the m1-based genetic score, and compared with

participants with 0–3 DM risk alleles (reference; incidence rate

ratio [IRR] of 1), participants with 4 risk alleles had an IRR

of DM of 2.22 (95% confidence interval [CI], 1.27–3.88; P !

), participants with 5 alleles had an IRR of DM of 2.24 (95%.01

CI, 1.22–4.11; ), and participants with 6–8 risk allelesP ! .01

had an IRR of DM of 3.80 (95% CI, 2.05–7.06; ) (FigureP ! .001

4A). With use of the m2-based genetic score, participants in

the 2 intermediate risk groups had an only slightly increased

DM risk (23–24 risk alleles: IRR 1.15; 95% CI, 0.61–2.16;

; and 25–26 risk alleles: 1.69; 95% CI, 0.93–3.07;P p .67

), whereas participants with 27–44 risk alleles had anP p .09

IRR of DM of 2.74 (95% CI, 1.53–4.88; ) (Figure 4B).P ! .001

DM prediction using area under the ROC curve. The in-

clusion of genetic data together with clinical risk factors slightly

improved the area under the ROC curve (Figure 5). Prediction

of DM was similar, regardless of how the genetic data was added

to the basic model (area under the ROC curve [AUC], 0.75)—

that is, whether considering the 4 SNPs retained in m1 (AUC,

0.78), all 22 SNPs (m2; AUC, 0.77), or the genetic score (AUC,

0.77) (Figure A1, online only).

Alternative models that consider exposure to thymidine an-

alogue reverse-transcriptase inhibitors and HCV coinfection.

In a further sensitivity analysis, current and cumulative ex-

posure to AZT and D4T as well as HCV coinfection were con-

sidered instead of ART group. Current exposure to AZT was

associated with DM risk in the basic model ( ), whereasP p .02

current D4T exposure ( ) and cumulative exposure toP p .92

AZT ( ) and D4T ( ) were not associated withP p .76 P p .60

DM risk. However, assessment of the relative contribution of

genetic and nongenetic factors, DM risk according to m1- or

m2-based genetic score, and DM prediction using area under

the ROC curve showed essentially unchanged results when

considering current AZT exposure rather than ART group

(Appendix A, online only).

HCV coinfection (Table 1) did not contribute significantly

to DM risk in the basic model ( ). In addition, HCVP p .25

coinfection explained no residual deviance, and DM risk ac-

cording to m1- or m2-based genetic score was essentially un-

changed when HCV coinfection was included in the models

(Appendix A, online only).

DISCUSSION

In the present study, we found that common SNPs associated

with DM in GWAS in the general population also influenced

DM risk in HIV-infected individuals. Four SNPs were retained

in the fully adjusted, multivariable analysis. These SNPs are
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Figure 4. Incidence rate ratios (IRRs) of diabetes mellitus (DM) in participants according to genetic score. A, Results according to m1 in which 4
single nucleotide polymorphisms were retained. The reference group comprises participants carrying 0–3 DM risk alleles ( ). B, Results accordingn p 239
to model m2. The reference group comprises participants carrying 0–22 DM risk alleles ( ).n p 180

known DM loci identified in multiple GWAS: FTO (rs8050136),

KCNJ11 (rs5219), TCF7L2 (rs7903146), and PPARG (rs1801282)

[13–16, 19, 20, 28, 29]. These 4 loci also showed the most

statistically significant DM association in a large study that

assessed 16 genetic variants together with key clinical variables

[26]. The SNP effects in our study changed little after adjust-

ment for clinical factors. For example, the DM effect of

rs8050136 (FTO), which in GWAS correlates with its effect on

obesity [14, 28], remained independently associated with DM

after adjusting for BMI in the present data set.

At the level of the study population, the contribution of

common SNPs to DM risk was similar to the effect of other

well-established DM risk factors, such as older age, but the

effect of the SNPs was smaller than the effect of BMI. It is

notable that the effect of SNPs on DM risk was larger than the

potential toxic effects of ART on DM risk. Whether long-term

exposure or the acute effect of certain ART agents is more

important in regard to DM risk is currently being debated [5,

6, 8, 9]. Importantly, the SNP effects on DM risk were little

affected when we considered either current or cumulative ex-

posure to ART groups previously defined in the SHCS [8] and

other studies [6, 9, 30] or current and cumulative exposure to

thymidine analogue NRTIs.

We followed the trend toward summarizing the effects of

multiple SNPs into a single, clinically useful genetic score [31,

32]. Consistent with the results from GWAS, the DM risk at-

tributable to an individual risk allele was modest, whereas the

combination of multiple unfavorable SNPs contributed sub-

stantially to DM risk. Applying either of 2 genetic scores, par-

ticipants with the most unfavorable genetic background had

�2.7-fold increased DM risk. In model m1, only those 4 SNPs

with a strong DM association were retained. We also applied

an alternative model m2, in which all SNPs were considered

(including some with weak DM associations), because the goal

of the study was to study all SNPs with a previously identified

DM association in the general population. Therefore, m2 was
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Figure 5. Area under the receiver operating characteristic curve (AUC) for basic and basic-plus-genetic models predicting new-onset diabetes mellitus
in individual study participants.

more likely than m1 to assign relatively high genetic scores to

participants without DM. However, irrespective of the genetic

model applied, and consistent with previous cohort studies

from the general population [26, 33], the addition of genetic

data to clinical risk factors increased DM prediction only

slightly. The main reason for this is likely that the non-DM

control subjects in this study and in reports from the general

population [26, 33] may have undiagnosed impaired glucose

tolerance without meeting formal DM diagnostic criteria. This

notion is consistent with the much stronger predictive capacity

of SNPs ( for a 15-SNP basic-plus-genetic model)AUC p 0.86

observed in a recent study in the general population that com-

pared DM participants with highly selected control groups of

patients who had normal glucose tolerance [34].

Strengths of this study include the prospective, longitudinal

data collection; the analysis restricted to SNPs previously iden-

tified in GWAS; exploration of different modeling strategies;

and inclusion of all participants who developed new-onset DM

during enrollment in an established, large observational study

over a median follow-up period of 19 years. Our study was

limited mainly by sample size. Not all evaluated SNPs were

retained in the final multivariable model, most likely because

of the generally small effect estimates of the genetic variants.

Previous GWAS have relied on the exploitation of data from

thousands of individuals to document such modest genetic

effects [11–20]. However, several SNPs not retained in the final

model m1 were associated with DM in only one GWAS. We

have observed in a previous genetic-dyslipidemia study [22]

that SNPs identified in GWAS were more likely to be replicated

in HIV-infected participants according to the number of GWAS

that independently confirmed their effect [35]. Therefore, large

data sets will be important in future genetic-DM studies in

HIV-infected individuals. This should also permit the stratifi-

cation of participants according to genetic score and exposure

to individual antiretroviral drugs, as in genetic-dyslipidemia

studies [22, 36, 37]. Additional limitations of the current study

include the relatively small number of women (25% of study

participants). Because previous GWAS were conducted in es-

sentially white populations, we restricted our study to white

SHCS participants. Because of differences in the tagging char-

acteristics of the array SNPs, however, our findings may not

be applicable to other populations.

In summary, our study explored GWAS-identified SNPs that

contribute to new-onset DM, a major metabolic complication

in HIV-infected individuals. It is likely that some of the DM

heritability unexplained by GWAS-identified SNPs can be un-

covered [35, 38] by interrogating additional common SNPs

associated with DM [39] and with fasting plasma glucose levels
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[11, 14, 40, 41] or by identifying rare variants through extensive

resequencing of the loci identified in GWAS. The potential for

comprehensive genetic and pharmacogenetic prediction of key

outcomes of clinical HIV care is now emerging, including pre-

diction of viral load set point and CD4 decline, dyslipidemia,

antiretroviral hypersensitivity, response to chronic HCV infec-

tion treatment, and lipodystrophy. We are currently conducting

a multicohort, GWAS-based genetic study of acute coronary

artery disease end points in HIV-infected individuals [35].

Appendix A, online only, provides further details of our study

[42–56].
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