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Background. The time passed since the infection of a human immunodeficiency virus (HIV)–infected

individual (the age of infection) is an important but often only poorly known quantity. We assessed whether the

fraction of ambiguous nucleotides obtained from bulk sequencing as done for genotypic resistance testing can serve

as a proxy of this parameter.

Methods. We correlated the age of infection and the fraction of ambiguous nucleotides in partial pol sequences

of HIV-1 sampled before initiation of antiretroviral therapy (ART). Three groups of Swiss HIV Cohort Study

participants were analyzed, for whom the age of infection was estimated on the basis of Bayesian back calculation

(n 5 3,307), seroconversion (n 5 366), or diagnoses of primary HIV infection (n 5 130). In addition, we studied

124 patients for whom longitudinal genotypic resistance testing was performed while they were still ART-naı̈ve.

Results. We found that the fraction of ambiguous nucleotides increased with the age of infection with a rate of

.2% per year within the first 8 years but thereafter with a decreasing rate. We show that this pattern is consistent with

population-genetic models for realistic parameters. Finally, we show that, in this highly representative population,

a fraction of ambiguous nucleotides of..5% provides strong evidence against a recent infection event,1 year prior

to sampling (negative predictive value, 98.7%).

Conclusions. These findings show that the fraction of ambiguous nucleotides is a useful marker for the age of

infection.

Human immunodeficiency virus type 1 (HIV-1) in-

fections are initiated in most cases by a single virus [1],

leading initially to a monomorphic viral population.

Subsequently, viral diversity builds up gradually during

HIV infection, first in a linear fashion but then at de-

creasing rates until a plateau is reached [2, 3]. In late-

stage HIV infection, even decreases in viral diversity

have been observed [3]. Thus, the diversity of the HIV

population within an individual patient is potentially

informative about the age of the infection, which is an

important parameter because it allows an assessment of

how far and how fast the infection has progressed. Se-

roconversion data are often lacking, and acute retroviral

syndrome may have not occurred or may not have been

recognized as such [4]. Thus, a method to estimate the
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infection duration based on viral sequences would be attractive,

given the abundance of HIV sequence data from genotypic drug

resistance tests.

Genotypic resistance tests use nucleotide sequences to infer to

what degree different drugs may inhibit a given viral population

of an HIV-infected individual. For economic reasons, these se-

quences are obtained by bulk sequencing; that is, the sequencing

procedure is applied to a diverse sample of the HIV population.

If the frequency of the most frequent nucleotide at a given po-

sition exceeds a threshold (typically around 80%), bulk se-

quencing returns the predominant nucleotide at this position.

However, if this is not the case, then so-called ambiguous nu-

cleotide calls are reported, implying that the patient harbors viral

strains with different nucleotides at this locus. Thus, the fraction

of ambiguous nucleotides is a measure of the degree of poly-

morphism of the HIV population within a patient, which in turn

should scale with the age of infection. Here, we assess to what

degree the proportion of ambiguous nucleotides correlates with

the time elapsed between HIV infection and sampling for gen-

otyping. To this end, we relate the fraction of ambiguous nu-

cleotides to the age of infection derived with methods of

different accuracy from 4 data sets.

MATERIALS AND METHODS

We used previously analyzed nucleotide sequences from patients

included in the Swiss HIV Cohort Study (SHCS) drug resistance

database (see Kouyos et al [5] and GenBank accession numbers

therein for a random sample of sequences). The SHCS is a na-

tionwide, prospective, clinic-based cohort study with continuous

enrollment and semiannual study visits [6, 7]. The SHCS has

been approved by the ethical committees of all participating in-

stitutions, and written informed consent has been obtained from

the participants. The SHCS drug resistance database contains the

results of 13,201 genotypic resistance tests from 9,231 patients

performed by the 4 laboratories engaged in HIV resistance testing

in Switzerland, stored in a central database developed and hosted

by SmartGene (Zug, Switzerland; Integrated Database Network

System, version 3.5.0) [8]. Resistance data stem from routine

clinical testing (60% of tests) and from tests performed retro-

spectively from frozen repository plasma samples (40% of tests).

Retrospective sequencing was performed systematically by ana-

lyzing the earliest plasma sample available for each patient. All

laboratories perform population-based sequencing of the full

protease gene and at minimum codons 28–225 of the reverse

transcriptase gene by means of commercial assays (Viroseq

version 1, PE Biosystems; Virsoseq version 2, Abbott AG;

vircoTYPE HIV-1 assay, Virco Lab) and in-house methods [9].

Subtype B dominates the Swiss HIV-1 epidemic [10, 11], and

we therefore focused on this subtype (n 5 9,157 sequences).

Because antiretroviral therapy strongly distorts viral diversity

[12], we included only sequences from patients who were

therapy-naı̈ve at the time of sampling and for whom an in-

dependent estimate of infection time was available (3,307 se-

quences, each from a different patient). The year of infection was

estimated as described elsewhere [13] as the median of patient-

specific infection time estimates based on a Bayesian back cal-

culation model incorporating the dates of the first positive or

last negative HIV test results and CD4 counts as predictor var-

iables. Note that this infection time estimate is independent of

the viral sequence. We refer to this data set as the full data set.

Furthermore, we considered 3 additional sets of patients, for

whom times or time differences are known with better accuracy:

(1) In the set of seroconverters (366 patients), patients were

recruited to the cohort within 1 year after infection, based on

documented negative and positive HIV test results no longer

than 180 d apart [11]; (2) The longitudinal set contains 124

patients for whom sequences are available at 2 time points (at

least 6 months apart). Although for this data set the time of

infection is not more precise than for the large data set, the age

difference of the 2 samples is known exactly; and (3) The Zurich

Primary HIV Infection Study (ZPHI; ClinicalTrials.gov identi-

fier, NCT00537966) set contains 130 patients with sequences

obtained during acute infection (median time from infection, 41

d; interquartile range [IQR], 28–56 d) [14].

The relationship between the proportion of ambiguous po-

sitions (the dependent variable) and the time since infection was

investigated using linear regression analysis. Because model re-

siduals were not normally distributed, we performed a bootstrap

analysis with 1,000 replicates to obtain 95% confidence inter-

vals (CIs). We verified results by repeating all analyses on logit-

transformed fractions by use of a generalized linear model for

proportions. Both crude and adjusted analyses, using the pa-

tient’s mode of HIV acquisition, ethnicity, sex, and age, were

performed. In addition, a variable coding for the sequence-

generating laboratory was included to account for assay- or

laboratory-specific effects. All P values were 2-sided, and the

level of statistical significance was set at .05.

We sought to identify a cutoff in the proportion of ambiguous

sites to classify a patient’s infection status into recent (infected

for<1 year) or chronic (infected for.1 year). The classification

performance of 2 categorizations of the proportion of ambiguous

sites was evaluated with receiver operating characteristic (ROC)

analyses. The first analysis included ambiguous sites as a cate-

gorical variable with 5 groups based on quintiles, whereas for the

second analysis only 2 categories were included based on an

a priori defined cutoff of <.5% or ..5% ambiguous positions.

RESULTS

In this study, we included HIV subtype B sequences of 3,307

patients. As shown in Table 1, the majority of individuals in our
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sample were male (n 5 2,593; 78.4%) and of white ethnicity

(n 5 2,933; 88.7%). Of these 3,307 patients, 1,482 (45%) had

acquired HIV through homosexual contacts, 862 (26.1%)

through intravenous drug use, and 857 (25.9%) through het-

erosexual intercourse. The median year of infection was 1995

with an IQR of 1991–2000, and the median duration from in-

fection to sampling for genotypic sequencing was 4.7 years (IQR,

3.3–6.9 years).

We found that for HIV-1 sequences sampled before initiation

of antiretroviral therapy, the fraction of ambiguous nucleotides

increases significantly with the age of infection. This relationship

is shown in Figure 1A for the full data set (3,307 patients) for

whom the age of infection has been estimated with the back

calculation algorithm (see Materials and Methods and Taffe and

May [13]). Figure 1A shows that the fraction of ambiguous sites

grows linearly with time in the first few years of infection and

Table 1. Summary of the Adjusted Least Squares Regression for the Full Data Set

All patients Patients infected <8 years

Measure

No. (%)

of patients Median (95% CI) No. (%) of patients Coefficient (95% CI)

Total no. of patients 3,307 (100) – 2,729 (100) –

Time since infection
(per year)

– .195 (.170–.221)a – .158 (.141–.175)a

Time since infection
(quadratic term)

– 2.007 (2.008 to 2.005)a – NA

Female sex 714 (21.6) .034 (2.053 to .121) 542 (19.9) .054 (2.047 to .159)

Age by quartile, years

25–30 949 (28.7) Referent 862 (31.6) Referent

33–35 789 (23.9) .146 (.060–.233)a 605 (22.2) .140 (.047–.233)a

38–41 781 (23.6) .232 (.144–.319)a 613 (22.5) .247 (.145–.338)a

45–54 788 (23.8) .237 (.146–.328)a 649 (23.8) .252 (.153–.348)a

Ethnicity

White 2,933 (88.7) Referent 2,455 (90.0) Referent

Black 63 (1.9) .169 (2.060 to .399) 58 (2.1) .080 (2.122 to .290)

Hispano-American 97 (2.9) .325 (.141–.509)a 89 (3.3) .343 (.140–.546)a

Asian 57 (1.7) .090 (2.147 to .328) 55 (2.0) .095 (2.109 to .290)

Unknown ethnicity 157 (4.7) 2.039 (2.200 to .122) 72 (2.6) .001 (2.186 to .211)

Mode of HIV acquisition

Heterosexual risks 857 (25.9) Referent 722 (26.5) Referent

Intravenous drug use 862 (26.1) .233 (.142–.323)a 595 (21.8) .247 (.140–.357)a

Homosexual risks 1,482 (44.8) 2.066 (2.154 to .021) 1326 (48.6) 2.063 (2.154 to .031)

Unknown risk 106 (3.2) .121 (2.062 to .305) 86 (3.2) .186 (2.006 to .416)

Laboratory

Laboratory A 213 (6.4) Referent 178 (6.5) Referent

Laboratory B 1,450 (43.8) .407 (.274–.540)a 1176 (43.1) .357 (.246–.456)a

Laboratory C 319 (9.6) .404 (.247–.562)a 264 (9.7) .312 (.180–.430)a

Laboratory D 1,325 (40.1) .787 (.653–.921)a 1111 (40.7) .705 (.594–.803)a

Calendar year of
sequencing, median
(IQR)

2007 (2006–2008) .119 (.101–.137)a 2007 (2006–2008) .111 (.093–.127)a

HIV RNA load at time of
GRT by 33 percentiles,
log10 copies/mL

3.3–4.0 1,013 (30.6) Referent 829 (30.4) Referent

4.5–4.8 1,013 (30.6) .097 (.017–.176)a 859 (31.5) .043 (2.050 to .128)

5.2–5.7 1,011 (30.6) .136 (.056–.217)a 853 (31.3) .063 (2.020 to .151)

HIV RNA load missing 270 (8.2) 2.106 (2.235 to .023) 188 (6.9) 2.130 (2.273 to .026)

Constant term (1 unit 5 1%) – 21.046 (21.231 to 2.860) – 2.885 (21.042 to 2.732)

NOTE. The 95% confidence intervals (CIs) were estimated with bootstrapping over 1,000 replicates. Note that for the quadratic model (all patients) both the

linear and the quadratic term significantly improve the fit, but not when only the first 8 years of infection were considered. GRT, genotypic resistance test; HIV,

human immunodeficiency virus; IQR, interquartile range; NA, not applicable.
a Statistically significant by the Wald test.
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then flattens off. This effect can be described by including time

since infection as a linear and a quadratic term in an adjusted

regression model with the fraction of ambiguous nucleotides as

outcome: if all patients are taken into account, both the positive

linear and the negative quadratic components significantly im-

prove the quality of the fit (model with linear term, r2 5 .14;

Figure 1. Relationship between the year of infection and the fraction of ambiguous nucleotides (f). A, Mean of f as a function of the age of infection,
where data points have been binned according to the age of infection in years (n 5 3,307 patients). The shaded area corresponds to the 95% confidence
interval of the means of f. These confidence intervals have been determined by bootstrap (with 1,000 samples). The red point corresponds to the mean of
f for the Zurich Primary HIV Infection Study data set (n 5 130), for which all sequences stem from the first few months after the infection. The
associated red line gives the 95% confidence interval of this mean. B, Quadratic and linear fit of the full data set. Note that the linear fit is restricted to
ages of infection of<8 years. C, Linear fit of the different data sets. Only sequences obtained within the first 8 years after infection were considered. D,
Distribution of the age of infection (in years) for different fractions of ambiguous nucleotides. The left plot depicts the density plot of the age of infection
for the 5 quintiles of f. The right plot depicts, for each of the 5 quintiles of f, the 25%–75% percentiles (green lines) and 5%–95% percentiles (black lines)
of the year of infection.
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model with additional quadratic term, r2 5 .17) (Figure 1B;

Table 1). Because the initial increase in the proportion of am-

biguous positions is almost linear during the first phase of in-

fection, we further restricted our analyses to patients with an

HIV sequence obtained in this phase of linear increase, that is,

within the first 8 years of infection (n 5 2,729). These adjusted

analyses revealed a yearly increase in the proportion of ambig-

uous sites of�.2 percentage points per year (Table 1), which was

comparable with results from unadjusted regression analyses

with yearly increases of .25% (95% CI, .23%–.28%) for the full

sample and .19% (95% CI, .18%–.21%) for the sample restricted

to patients with an infection duration of<8 years. Interestingly,

Table 1 indicates that the mode of HIV acquisition significantly

affects the level of diversity. In particular, intravenous drug users

exhibit a larger fraction of ambiguous nucleotides than do both

heterosexuals and men who have sex with men, which may

suggest broader transmission bottlenecks for blood-transmitted

than for sexually transmitted HIV.

To further assess the validity of the relationship between am-

biguity and age of infection, we examined the smaller sero-

converter set, which consists of 366 individuals who were

recruited to the cohort in the early phase of their infection and for

whom therefore the time point of infection was known within

a given time interval of 6 months, and the longitudinal set, which

contains 124 patients with sequence samples obtained from 2

time-points at least 6 months apart from each other. In the latter

data set, inclusion was restricted to those patients for whom both

samples were obtained within the first 8 years of infection. For

these patients, we correlated the length of the time interval be-

tween the 2 measurements with the increase of the fraction of

ambiguous nucleotides. Figure 1C shows that both additional data

sets yield an estimate for the increase of ambiguous nucleotides

over the first 8 years after infection that is similar to the estimate

yielded by the original data set. Finally, we used the ZPHI data set,

which contains the most stringent infection time estimate, to test

the diversity around the time point of infection. Figure 1A shows

that the fraction of ambiguous nucleotides in the ZPHI set is

consistent with that found in the other 3 data sets. Moreover, for

the ZPHI set, we observed a highly significant correlation

(Spearman q = 36; P , .001) between the fraction of ambiguous

nucleotides in the pol gene and the diversity of clonal env se-

quences [14], which confirms that the fraction of ambiguous

nucleotides is a good marker for viral diversity.

In order to explore whether the observed correlation between

infection time and the fraction of ambiguous sites could be

exploited for age classification of individual HIV sequences, we

subdivided our data set into quintiles of the fraction of ambig-

uous nucleotides f and inferred the distribution of the time of

infection for each of these quintiles. Figure 1D shows that the

fraction of ambiguous nucleotides provides useful information

mainly on the lower bound of the age of infection: whereas

sequences with f , .68% (ie, the first two quintiles) (Table 2)

may stem from the early phase of an infection, this is unlikely for

sequences with a larger fraction of ambiguous nucleotides.

However, it is important to note that although it is unlikely that

the HIV sequence from a recent HIV infection has a large

fraction of ambiguous nucleotides, this may occur if the HIV

population is founded by .1 virus, in which case diversity is

large from the beginning on. This effect can be clearly seen in the

ZPHI data set: a substantial minority of 24 (18%) of 130 patients

exhibit a fraction of ambiguous nucleotides ..68%, even

though all patients’ samples have been sequenced in the first

months of their infection. This can be explained by results of

Keele et al [1], who found that 23% of HIV infections are

founded by .1 virus and hence should exhibit a large diversity

even during primary infection.

We explicitly evaluated 2 different stratifications for cutoffs to

predict whether a patient was infected for,1 year at the time of

sampling for the genotypic test. As shown in Table 2, the se-

lection of a cutoff of >.5% ambiguous positions predicted re-

cent infections quite well in our full data set of 3,307 patients. Of

212 patients with a recent infection at the time of genotypic

testing, 184 had <.5% ambiguous positions in their HIV se-

quence (sensitivity, 86.8%), but the specificity, which is the

proportion of chronically infected patients with ..5% ambig-

uous positions, was only 70% (ROC area under curve, 78.3%).

Therefore, this cutoff of<.5%may not be very useful to identify

recently infected patients, but it can very accurately discriminate

against patients with a chronic infection: only 28 (1.3%) of 2,190

patients with ..5% ambiguous positions had an infection du-

ration of <1 year at the time of genotyping. Thus, if the ob-

served fraction of ambiguous positions is ..5%, then there is

a probability of 98.7% (95% CI 98.2%–99.1%) that the geno-

typic test was performed .1 year after infection (negative pre-

dictive value). Stratification by quintile did not improve the

classification performance but essentially confirmed the above

finding: when quintiles 1 and 2 are collapsed into a single cate-

gory and compared with the remaining strata (ie, sequences with

,.68% vs those with >.68% ambiguous positions), sensitivity

increased to 89.6% but specificity decreased to 63.2%. When

testing the .5% cutoff in the sample of observed seroconverters

(n 5 366), the performance was very similar to that in the full

sample. Sensitivity and specificity were 84.3% and 59.8%,

respectively (data not shown). Overall, 79.8% of patients were

correctly classified, and the area under the ROC curve was 72.0%.

The observed increase in ambiguous positions over the time

of infection likely reflects the diversification of the HIV pop-

ulation after the genetic bottleneck at the infection event. In the

simplest scenario, this diversification is controlled only by mu-

tation and genetic drift (ie, random extinction of viral strains).

We modeled this scenario by simulating the Wright-Fisher

model (WFM) [15], starting from an initially uniform
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population (ie, with no initial diversity). As the WFM assumes

neutrality, we focused on ambiguous nucleotides at 4-fold de-

generate third-codon positions for which the assumption of

neutrality is best justified. We found that the WFM can re-

produce the temporal increase of the fraction of ambiguous sites

for parameters that have been shown to reproduce neutral

evolution in HIV (see Kouyos et al [16] and references therein)

(Figure 2). This finding implies that, at least for 4-fold de-

generate third-codon positions, the increasing diversity of the

HIV population can be understood as the combined effect of

mutation and genetic drift acting on a virus population, which is

homogenous at the time point of infection.

DISCUSSION

The most relevant clinical result of this study is that a large

fraction of ambiguous nucleotides provides evidence against

a recent infection event. In particular, we found that a threshold

of .5% ambiguous nucleotides yields a negative predictive value

of 98.7%. It is important to note that, by definition, the negative

predictive value depends on the overall composition of the

considered population at time of diagnosis. A strength of the

sample studied here, however, is the high representativeness of

the SHCS for the epidemic in Switzerland [6–8]. Thus, the

composition of our sample is likely to be very similar to that of

the population of HIV-1-infected individuals at the time of HIV

infection diagnosis, and therefore the negative predictive value

inferred here closely describes the situation in clinical practice.

Finally, we find that although the frequency of ambiguous nu-

cleotide calls differs significantly between laboratories (Table 1),

the negative predictive value varies only marginally when cal-

culated for samples from each laboratory separately (range,

98.5%–99.5%; v2 test, P 5 .668).

In order to test the robustness of our findings, we additionally

assessed the impact of HLA types, transmitted resistance, and

subtype. HLA types may affect viral diversity, for instance, by

stabilizing selection (and possibly by maintaining detrimental

viral mutations, as may be the case for type HLA-B*57) or, in the

opposite, by leading to increased viral replication and diversity

by triggering only suboptimal cytotoxic T lymphocytes re-

sponses, for instance, in the presence of homozygous HLA al-

leles. Using available HLA data from 352 individuals, we

considered the homozygosity of HLA-B (n 5 32) and the fol-

lowing HLA-B haplotypes: HLA-B*57 (n 5 23), HLA-B*27

(n 5 25), HLA-B*5801 (n 5 7), and HLA-B*35 (n 5 80).

Table 2. Summary of the Two Cutoff Methods: A Priori Defined Threshold of .5% and Cutoffs Based on Quintiles

Stratum number

Stratification

cutoff, %

No. per

stratum

No. (%) of patients

infected <1 year

Comparison

of strata a
Sensitivity,

% b
Specificity,

% c
Correctly

Classified, %

Predefined

1 <.5 1,117 184 (16.5) 1 vs 2 86.8 69.9 70.9

2 ..5 2,190 28 (1.3) – – – –

By quintiles

1 0–.15 679 146 (21.5) 1 vs 2, 3, 4, 5 68.8 82.8 81.9

2 .16–.67 649 44 (6.8) 1, 2 vs 3, 4, 5 89.6 63.2 64.9

3 .68–1.35 691 14 (2.0) 1, 2, 3 vs 4, 5 96.2 41.4 44.9

4 1.36–2.07 633 7 (1.1) 1, 2, 3, 4 vs 5 99.5 21.1 26.2

5 2.08–6.65 655 1 (.2) – – – –

a Indicates how strata are collapsed for comparison; for example, strata 1 versus all remaining strata.
b Proportion of patients infected <1 year whose human immunodeficiency virus (HIV) sequence had <.5% ambiguous positions.
c Proportion of patients infected .1 year whose HIV sequence had ..5% ambiguous positions.

Figure 2. Temporal increase of the fraction of ambiguous nucleotides in
theWright-Fisher model (WFM) for a population size of 500 and a mutation
rate of 33 1025 mutations per generation (solid green line) and at 4-fold
degenerate third-codon positions in the full data set (dashed black line).
The curve for the WFM has been obtained by averaging over 104 runs of
the model. N and m denote the effective population size and the mutation
rate, respectively. The WFM describes discrete and nonoverlapping
generations in a population with fixed size N. Every generation, each of
the N genomes undergoes mutation with probability m. Then the
N genomes for the next generation are determined from the gene pool by
drawing every offspring genome with uniform probability from the
N parental genomes. Note that the WFM assumes selective neutrality.
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Upon inclusion of these variables in the adjusted regression

model (restricted to a time of<8 years), neither of these HLA-B

alleles reached statistical significance. There was a nonsignificant

trend for higher viral diversity among carriers of homozygous

HLA-B alleles of .243 (95% CI -.054 to .551). Concerning HIV

subtype, it should be noted that the present analysis focused on

subtype B, because most patients in the SHCS have been infected

with that subtype. We found, however, very similar results for

other subtypes (Table 3), indicating that our methodology ex-

tends beyond subtype B. However, it is also clear from the

limited data available for non-B subtypes that additional tests

are required for these subtypes. Finally, transmitted resistance

mutations (present in 10% of the included patients) did not

seem to have an impact when included in an adjusted model

analogous to that in Table 1 (with time restricted to <8 years),

since the parameters were not statistically significant (data not

shown). In summary, these 3 tests suggest that our findings are

robust against HLA type, subtype, and transmitted resistance.

A potential limitation of our analysis is the accuracy of in-

fection date estimates. We have confirmed the correlation be-

tween the age of an infection and the fraction of ambiguous base

calls in several data sets with different estimation methods for

infection duration. Moreover, we performed a sensitivity anal-

ysis to assess the impact of the uncertainty of infection date

estimates from the back calculation model (data not shown).

This was done by repeating the adjusted and unadjusted re-

gression analyses on a random time point between the upper

and the lower bound of the posterior infection date distribution

[13]. Time trends were somewhat attenuated due to the in-

troduction of additional variation with an increase of.13% per

year (95% CI, .11%–.14%) for the unadjusted analysis and

an increase of .11% per year (95% CI, .12%–.13%) for the ad-

justed analysis, but these point estimates still reached statistical

significance.

We would like to emphasize that this study represents a proof

of principle and that the details of the method should ideally be

replicated and calibrated for each sequencing laboratory or

method (especially in the light of our finding of significant

differences between laboratories) (Table 1). Moreover, it is

important to note that 10%–20% of recently infected patients do

have a high viral diversity because they are infected with several

strains. Therefore, the fraction of ambiguous nucleotides should

be only one of several measurements used to decide whether

a patient is recently infected.

Detection of ambiguous nucleotides is a byproduct of bulk

sequencing. Here, we have shown that this byproduct carries

important information on the age of the infection at sampling

time. In particular, a large frequency of ambiguous nucleotides

argues against a recent infection event. The qualitative pattern of

an initially linearly increasing amount of diversity and sub-

sequent saturation is consistent with the diversification pattern

observed for the env gene [3]. Overall, our study highlights the

usefulness of diversity measures as markers for infection age.

This usefulness might further increase with the advent of array-

based pyrosequencing, which allows the diversity of the HIV

population to be analyzed in much more detail.
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