Effects of Evening vs Morning Levothyroxine Intake

A Randomized Double-blind Crossover Trial

Nienke Bolk, MD; Theo J. Visser, PhD; Judy Nijman, BSc; Ineke J. Jongste, RN; Jan G. P. Tijssen, PhD; Arlie Berghout, MD, PhD, FRCP

Background: Levothyroxine sodium is widely prescribed to treat primary hypothyroidism. There is consensus that levothyroxine should be taken in the morning on an empty stomach. A pilot study showed that levothyroxine intake at bedtime significantly decreased thyrotropin levels and increased free thyroxine and total triiodothyronine levels. To date, no large randomized trial investigating the best time of levothyroxine intake, including quality-of-life evaluation, has been performed.

Methods: To ascertain if levothyroxine intake at bedtime instead of in the morning improves thyroid hormone levels, a randomized double-blind crossover trial was performed between April 1, 2007, and November 30, 2008, among 105 consecutive patients with primary hypothyroidism at Maasstad Hospital Rotterdam in the Netherlands. Patients were instructed during 6 months to take 1 capsule in the morning and 1 capsule at bedtime (one containing levothyroxine and the other a placebo), with a switch after 3 months. Primary outcome measures were thyroid hormone levels; secondary outcome measures were creatinine and lipid levels, body mass index, heart rate, and quality of life.

Results: Ninety patients completed the trial and were available for analysis. Compared with morning intake, direct treatment effects when levothyroxine was taken at bedtime were a decrease in thyrotropin level of 1.25 mIU/L (95% confidence interval [CI], 0.60-1.89 mIU/L; \(P < .001 \)), an increase in free thyroxine level of 0.07 ng/dL (0.02-0.13 ng/dL; \(P = .01 \)), and an increase in total triiodothyronine level of 6.5 ng/dL (0.9-12.1 ng/dL; \(P = .02 \)) (to convert thyrotropin level to micrograms per liter, multiply by 1.0; free thyroxine level to picomoles per liter, multiply by 12.871; and total triiodothyronine level to nanomoles per liter, multiply by 0.0154). Secondary outcomes, including quality-of-life questionnaires (36-Item Short Form Health Survey, Hospital Anxiety and Depression Scale, 20-Item Multidimensional Fatigue Inventory, and a symptoms questionnaire), showed no significant changes between morning vs bedtime intake of levothyroxine.

Conclusions: Levothyroxine taken at bedtime significantly improved thyroid hormone levels. Quality-of-life variables and plasma lipid levels showed no significant changes with bedtime vs morning intake. Clinicians should consider prescribing levothyroxine intake at bedtime.

Trial Registration: isrctn.org Identifier: ISRCTN17436693 (NTR959).

time leads to lower thyrotropin and higher FT₄ and T₃ levels. Hypothyroidism can have major effects on health and quality of life (QOL), as it is associated with fatigue, weight gain, cold intolerance, depression, neuromuscular symptoms, diastolic dysfunction, and impairment of renal function.12-15 It is also associated with risk factors for cardiovascular disease, such as hyperlipidemia, hyperhomocysteinemia, and arterial hypertension, notably in the case of insufficient thyroid hormone supplementation.16,17

The primary objective of this study was to determine whether a change occurred in thyrotropin and thyroid hormone levels when levothyroxine was taken at bedtime vs in the morning. We further investigated whether a bedtime regimen would affect creatinine and lipid levels, body mass index, heart rate, and QOL.

DATA COLLECTION, FOLLOW-UP, AND COMPLIANCE

At baseline and every 6 weeks, patients were seen in our clinic by a research nurse. At these visits, blood samples were obtained to determine plasma thyrotropin, FT₄, T₃, creatinine, and lipid levels, and blood pressure, heart rate, and body weight were measured. The remaining capsules in the containers were counted to check for compliance. Quality-of-life questionnaires were completed by patients at baseline, at 3 months, and at the end of the study.

BLOOD SAMPLING

Blood samples were drawn on the morning of the planned visit to the research nurse. Capsules were not withheld on the day of blood sampling. Serum thyrotropin levels (reference range, 0.4-4.0 mIU/L) were measured by immunometric assay (Immulite 2000; DPC Nederland, Breda, the Netherlands), with a detection limit of 0.002 mIU/L. Levels of FT₄ (reference range, 10.0-24.0 pmol/L; equivalent to 0.78-1.86 ng/dL) and T₃ (reference range, 1.23-2.80 nmol/L; equivalent to approximately 80-182 ng/dL) were measured by competitive immunoassay (Immulite 2000). Creatinine and lipid levels were also measured (Dimension RxL; Dade Behring, Deerfield, Illinois).
triiodothyronine level to nanomoles per liter, multiply by 0.0154.

The Hospital Anxiety and Depression Scale consists of 14 items pertaining to anxiety and depression.19 The 20-Item Multidimensional Fatigue Inventory (mFatigue) measures 5 different dimensions of fatigue.20 The specific questionnaire for thyroid symptoms assesses 14 symptoms of hypothyroidism and 6 symptoms of hyperthyroidism.21 At the end of the trial before the randomization code was broken, patients were asked during which period of the trial they had felt better. After the trial ended, patients were free to choose at what time of day they preferred to continue taking levothyroxine, in the morning or at bedtime. One year after the trial, we asked every patient at what time he or she was taking the levothyroxine tablet.

QUALITY OF LIFE AND PATIENT PREFERENCE

Three QOL questionnaires (36-Item Short Form Health Survey, Hospital Anxiety and Depression Scale, and 20-Item Multidimensional Fatigue Inventory) and a specific questionnaire about symptoms of hypothyroidism and hyperthyroidism were completed by patients at baseline, at 3 months, and at the end of the study. Patients completed the questionnaires under the supervision of a research nurse. The 36-Item Short Form Health Survey is a general QOL questionnaire that comprises 8 scales.23 The Hospital Anxiety and Depression Scale consists of 14 items pertaining to anxiety and depression.19 The 20-Item Multidimensional Fatigue Inventory measures 5 different dimensions of fatigue.20 The specific questionnaire for thyroid symptoms assesses 14 symptoms of hypothyroidism and 6 symptoms of hyperthyroidism.21

STUDY PARTICIPANTS AND TREATMENT

Between April 1, 2007, and November 30, 2008, a total of 141 consecutive patients with primary hypothyroidism were assessed for study eligibility. Ultimately, 105 patients met the inclusion criteria and gave written informed consent. Reasons for exclusion were current use of interfering medication (n = 11), history of thyroid carcinoma (n = 3), unusual dosage of levothyroxine (n = 6), treatment for breast cancer (n = 1), and Addison disease (n = 1). Fifteen randomized patients withdrew their consent shortly after enrollment in the trial and had baseline data only. The baseline characteristics of these patients did not differ from those of patients who completed the trial. Data for the entire 24 weeks were available for 90 patients (86%) who enrolled in the trial, 47 of whom started with levothyroxine intake in the morning and 43 of whom started with levothyroxine intake at bedtime and placebo at bedtime and 43 of whom started with levothyroxine intake at bedtime and placebo in the morning (Figure 1).

Baseline characteristics of the 2 groups are given in Table 1. There were differences between the 2 groups in the proportions of male patients, levothyroxine dosages, and thyrotropin levels. On average, patients missed a mean (SD) of 1.3 (6.0) capsules in the morning and 1.9 (10.1) capsules in the evening during 24 weeks of the trial (P = .54). Because there were no severe symptoms related to hypothyroidism or hyperthyroidism, no patient required a change in levothyroxine dosage during the trial.
PRIMARY OUTCOMES

Results of the primary outcomes are summarized in Table 2 and in Figure 2. Among the group that received morning levothyroxine first, the mean (SD) thyrotropin level decreased from 2.66 (2.53) mIU/L at 12 weeks to 1.74 (2.43) mIU/L at 24 weeks. In contrast, among the group that received bedtime levothyroxine first, the mean (SD) thyrotropin level increased from 2.36 (2.55) mIU/L at 12 weeks to 3.86 (4.02) mIU/L at 24 weeks. When overall changes were compared between the 2 groups, bedtime levothyroxine intake was found to have a direct treatment effect, with a decrease in thyrotropin level of 1.25 mIU/L (95% confidence interval [CI], 0.60-1.89 mIU/L; P = .001) relative to morning levothyroxine intake.

The mean (SD) FT₄ level in the group that received morning levothyroxine first increased from 1.48 (0.24) ng/dL at 12 weeks to 1.59 (0.33) ng/dL at 24 weeks. In the group that received bedtime levothyroxine first, the mean (SD) FT₄ level decreased from 1.54 (0.28) ng/dL at 12 weeks to 1.51 (0.20) ng/dL at 24 weeks. Therefore, bedtime levothyroxine intake resulted in a direct treatment effect, with an increase in FT₄ level of 0.07 ng/dL (95% CI, 0.02-0.13; P = .01) relative to morning levothyroxine intake.

Changes in TT₃ levels were similar to changes in FT₄ levels. In the group that received morning levothyroxine first, the mean (SD) TT₃ level increased from 121.2 (28.1) ng/dL to 127.0 (31.6) ng/dL. In the group that received bedtime levothyroxine first, the mean (SD) TT₃ level increased from 128.4 (30.6) ng/dL to 121.9 (36.3) ng/dL. In this case, the direct treatment effect of bedtime levothyroxine was an increase in TT₃ level of 6.5 ng/dL (95% CI, 9.0-12.10 ng/dL; P = .02). No first-order carryover effect was found for thyrotropin, FT₄, or TT₃ levels.

SECONDARY OUTCOMES

There were no differences between the 2 study groups in serum creatinine or lipid levels, blood pressure, body mass index, or heart rate. These results are summarized in Table 2.

The 36-Item Short Form Health Survey, Hospital Anxiety and Depression Scale, and 20-Item Multidimensional Fatigue Inventory showed no differences in subscale or total scores between the periods of morning vs bedtime intake of levothyroxine (Table 3). Hypothyroidism symptoms were unchanged between the 2 periods, despite improved thyroid hormone profiles, nor was there a difference in hyperthyroidism symptoms.

PATIENT PREFERENCE

When asked at the end of the trial (before the randomization code was broken), 34 of 90 patients said that they felt better during the period of morning intake of levothyroxine, 31 patients preferred the period of bedtime intake, and 25 patients indicated no preference. At 1 year

Table 2. Laboratory Results and Measurements After 12 and 24 Weeks of Morning vs Bedtime Levothyroxine Sodium Intake in the 2 Randomized Study Groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Morning Levothyroxine Sodium Intake First</th>
<th>Bedtime Levothyroxine Sodium Intake First</th>
<th>Direct Treatment Effect (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline 12 wk 24 wk</td>
<td>Baseline 12 wk 24 wk</td>
<td>P Value</td>
</tr>
<tr>
<td>Thyrotropin level, mIU/L</td>
<td>1.52 (1.71) 2.66 (2.53) 1.74 (2.43)</td>
<td>3.31 (3.01) 2.36 (2.55) 3.86 (4.02)</td>
<td><.001</td>
</tr>
<tr>
<td>Free thyroxine level, ng/dL</td>
<td>1.58 (0.26) 1.48 (0.24) 1.59 (0.33)</td>
<td>1.50 (0.27) 1.54 (0.28) 1.51 (0.20)</td>
<td>.02</td>
</tr>
<tr>
<td>Total triiodothyronine level, ng/dL</td>
<td>132.9 (30.7) 121.2 (28.1) 127.0 (31.6)</td>
<td>122.0 (38.1) 128.4 (30.6) 121.9 (36.3)</td>
<td>.02</td>
</tr>
<tr>
<td>Creatinine level, mg/dL</td>
<td>0.76 (0.17) 0.77 (0.21) 0.74 (0.16)</td>
<td>0.75 (0.28) 0.74 (0.26) 0.74 (0.29)</td>
<td>.29</td>
</tr>
<tr>
<td>Total cholesterol level, mg/dL</td>
<td>194.3 (38.5) 197.1 (38.1) 191.3 (38.3)</td>
<td>201.2 (44.7) 198.9 (46.6) 190.0 (43.2)</td>
<td>.39</td>
</tr>
<tr>
<td>Body mass index*</td>
<td>29.5 (5.4) 29.7 (5.6) 29.7 (5.6)</td>
<td>28.7 (4.6) 28.8 (4.6) 29.1 (4.8)</td>
<td>.95</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>75.0 (11.5) 79.0 (12.3) 79.0 (13.0)</td>
<td>77.0 (11.6) 78.0 (11.7) 77.0 (11.0)</td>
<td>.37</td>
</tr>
</tbody>
</table>

SI conversion factors: To convert thyrotropin level to micrograms per liter, multiply by 1.0; free thyroxine level to picomoles per liter, multiply by 12.871; total triiodothyronine level to nanomoles per liter, multiply by 0.0154; creatinine level to micromoles per liter, multiply by 88.4; cholesterol level to millimoles per liter, multiply by 0.0259.

*Calculated as weight in kilograms divided by height in meters squared.
after completion of the trial, more than half of the patients still preferred bedtime intake of levothyroxine.

We performed this large, randomized, double-blind crossover trial among 90 patients to address whether levothyroxine taken at bedtime instead of in the morning improves thyroid hormone levels. The primary outcomes show a decrease in thyrotropin level of 1.25 mIU/L and an increase in FT$_4$ and TT$_3$ levels when levothyroxine is taken at bedtime. Despite the change in thyroid hormone levels, the patient QOL did not differ. Bedtime levothyroxine intake could be more convenient for patients, as they do not have to postpone breakfast. After our study was completed, more than half of the patients decided to continue with bedtime intake of levothyroxine.

How can the bioavailability effects of levothyroxine be explained? An interval of 30 minutes between taking levothyroxine and eating breakfast may be too short to prevent interference with gastrointestinal absorption of levothyroxine. Moreover, many patients drink coffee in the morning, often instead of eating breakfast, or may take other medications that interfere with levothyroxine absorption. In contrast, most patients in our study stated that they had eaten no food or snacks for several hours before bedtime, this being their usual routine. Bowel motility is slower at night, resulting in more prolonged exposure of levothyroxine to the intestinal wall and, consequently, in better bioavailability. Furthermore, basal gastric acid secretion is highest in the late evening and is lowest in the morning. An acidic environment promotes the absorption of levothyroxine. These circadian differences in gastrointestinal function could be a pathophysiological explanation for our findings.

Thyroid hormone level changes did not translate into QOL changes. There are various explanations for this observation. Patients with hypothyroidism taking adequate doses of levothyroxine (ie, those whose thyrotropin level is in the reference range) can still have significant impairment in psychological well-being and cognitive function compared with control subjects. This could be related to their knowing that they have a chronic illness or are overweight. Weight gain and inability to lose weight are known to occur in patients with treated hypothyroidism and hyperthyroidism. In our study, body mass index was high in both study groups. A trial investigating T$_3$ supplementation showed that improved QOL was limited to a subgroup of patients with suppressed thyrotropin levels who had lost weight. Based on the results of population studies, it has been suggested that the treatment goal in patients with hypothyroidism should be a thyrotropin level of 1.0 mIU/L or lower. In contrast, plasma thyroid hormone levels may not be representative of thyroid hormone levels at the tissue level (eg, in the brain); therefore, they would be unrelated to QOL. Finally, newly discovered thyroid hormone metabolites such as thyronamine that are not replaced by levothyroxine could influence QOL; furthermore, the presence of an autoimmune disorder (eg, Hashimoto disease) may have an effect on the brain and on QOL independent of thyroid hormone supplementation.

Primary outcomes of this study are consistent with results of an earlier pilot study. Two other studies on the timing of levothyroxine intake have been published. In a retrospective medical record review of 15 nursing home residents, Elliott observed a nonsignificant decrease in thyrotropin levels when levothyroxine intake was switched from after breakfast to midnight. The findings in that nonrandomized trial confirm the results of our study. A 3-period crossover design study showed higher thyrotropin levels when levothyroxine was taken at bedtime instead of before breakfast, but there was no change in FT$_4$ or TT$_3$ levels, as in our study. The exclusion criteria for that study were extensive, and only 19% of eligible patients were agreeable to participation. The study also included patients with thyroid cancer, whose thyrotropin levels were maintained at lower levels than those of the rest of the population. Therefore, we believe that the findings in that study extend the generalizability of our study results to the treatment of primary hypothyroidism. Lower thyrotropin levels associated with levothyroxine intake before breakfast vs at bedtime intake in
that study could be explained by the longer interval between levothyroxine intake and breakfast (60 minutes vs 30 minutes in our study). Also, most patients in our study stated that they had nothing to eat (or only a small snack) for several hours before bedtime, which differs across cultures. In all studies performed on the timing of levothyroxine ingestion, intake on an empty stomach seems to result in maximal absorption of levothyroxine. Our study shows that if this fasting regimen can be achieved at bedtime, then resulting thyroid hormone levels are better than those associated with levothyroxine intake 30 minutes before breakfast.

The crossover design of our study has the advantage that each patient served as his or her own control. Therefore, a statistical difference in thyrotropin values at baseline will not influence primary and secondary outcomes of the study. The study design has potential limitations, including order and sequence effects. We found no first-order carryover effect between the 2 periods, but we looked at no other order or sequence effects. It should

Table 3. Quality of Life and Symptoms After 12 and 24 Weeks of Morning vs Bedtime Levothyroxine Sodium Intake in the 2 Randomized Study Groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Morning Levothyroxine Sodium Intake First</th>
<th>Bedtime Levothyroxine Sodium Intake First</th>
<th>Difference</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-Item Short Form Health Survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical functioning</td>
<td>62.7 (20.2)</td>
<td>62.7 (20.9)</td>
<td>-0.83 (10.93)</td>
<td>0.86 (-1.26 to 3.50)</td>
</tr>
<tr>
<td>Social functioning</td>
<td>72.3 (23.6)</td>
<td>70.9 (23.0)</td>
<td>-1.74 (20.52)</td>
<td>0.24 (-4.44 to 4.92)</td>
</tr>
<tr>
<td>Role limitations due to physical problems</td>
<td>55.9 (42.4)</td>
<td>59.2 (41.3)</td>
<td>-3.70 (39.98)</td>
<td>1.46 (-7.46 to 10.37)</td>
</tr>
<tr>
<td>Mental health</td>
<td>70.3 (17.8)</td>
<td>68.3 (17.8)</td>
<td>-1.67 (13.83)</td>
<td>1.97 (-0.83 to 4.77)</td>
</tr>
<tr>
<td>Vitality</td>
<td>50.0 (23.7)</td>
<td>52.0 (22.9)</td>
<td>-2.00 (20.70)</td>
<td>1.72 (-2.09 to 5.52)</td>
</tr>
<tr>
<td>Pain</td>
<td>73.3 (26.2)</td>
<td>72.8 (23.5)</td>
<td>-0.50 (20.19)</td>
<td>1.05 (-3.07 to 5.16)</td>
</tr>
<tr>
<td>General health</td>
<td>53.8 (22.4)</td>
<td>56.6 (21.6)</td>
<td>-3.80 (13.99)</td>
<td>0.41 (-2.77 to 3.59)</td>
</tr>
<tr>
<td>Hospital Anxiety and Depression Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>6.3 (4.5)</td>
<td>5.9 (4.2)</td>
<td>0.35 (4.11)</td>
<td>0.34 (-0.23 to 0.92)</td>
</tr>
<tr>
<td>Depression</td>
<td>5.0 (3.8)</td>
<td>4.4 (3.8)</td>
<td>0.60 (4.1)</td>
<td>0.50 (-0.10 to 1.10)</td>
</tr>
<tr>
<td>20-Item Multidimensional Fatigue Inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General fatigue</td>
<td>12.7 (5.3)</td>
<td>12.2 (5.0)</td>
<td>0.50 (5.1)</td>
<td>0.50 (0.40 to 0.60)</td>
</tr>
<tr>
<td>Physical fatigue</td>
<td>12.5 (5.4)</td>
<td>11.7 (4.8)</td>
<td>0.80 (4.3)</td>
<td>1.05 (-0.83 to 4.77)</td>
</tr>
<tr>
<td>Reduced activity</td>
<td>10.8 (4.3)</td>
<td>10.4 (4.4)</td>
<td>0.40 (4.3)</td>
<td>0.41 (-2.77 to 3.59)</td>
</tr>
<tr>
<td>Reduced motivation</td>
<td>9.6 (4.3)</td>
<td>9.4 (4.5)</td>
<td>0.20 (4.7)</td>
<td>0.24 (-4.44 to 4.92)</td>
</tr>
<tr>
<td>Mental fatigue</td>
<td>9.8 (5.0)</td>
<td>10.0 (4.8)</td>
<td>0.20 (5.1)</td>
<td>0.50 (-0.10 to 1.10)</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>29.8 (8.6)</td>
<td>28.7 (8.3)</td>
<td>1.10 (8.3)</td>
<td>0.34 (-0.23 to 0.92)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>11.5 (3.7)</td>
<td>10.8 (3.5)</td>
<td>0.70 (3.5)</td>
<td>0.50 (-0.10 to 1.10)</td>
</tr>
</tbody>
</table>
also be noted that this was a single-site study in the Netherlands, where eating habits might be different from those in other countries or cultures.

Based on the results of our study, clinicians should inform patients with hypothyroidism that levthyroxine intake at bedtime is a good alternative to levthyroxine intake in the morning, provided that levthyroxine is taken on an empty stomach. For patients who do not attain normal thyrotropin or FT₃, levels with morning levthyroxine intake, a switch to bedtime is recommended. Recommendations on timing of levthyroxine intake and on uptake interference by food are found in few guidelines about the management of hypothyroidism. Drug information resources and guidelines require revision in this respect.

In conclusion, bedtime intake of levthyroxine in our study significantly improved thyroid hormone levels. This may be explained by better gastrointestinal bioavailability at night or by less uptake interference by food or medications. As shown in this study, bedtime administration is more convenient for many patients. Clinicians should inform their patients about the possibility of taking levthyroxine at bedtime. A prolonged period of bedtime levthyroxine therapy may be required for a change in QOL to occur.

Accepted for Publication: June 1, 2010.
Correspondence: Nienke Bolk, MD, Department of Internal Medicine, Maasstad Hospital Rotterdam, 315 Groene Hilleiding, 3075 EA Rotterdam, the Netherlands (nienkebolk@hotmail.com).

Authors Contributions: Dr Bolk had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Bolk, Visser, and Berghout. Acquisition of data: Bolk, Jongste, and Berghout. Analysis and interpretation of data: Bolk, Visser, Nijman, Tijsjen, and Berghout. Drafting of the manuscript: Bolk, Visser, Nijman, Jongste, Tijsjen, and Berghout. Critical revision of the manuscript for important intellectual content: Visser, Tijsjen, and Berghout. Statistical analysis: Nijman and Tijsjen. Administrative, technical, or material support: Nijman and Jongste. Study supervision: Berghout.

Financial Disclosure: None reported.

Previous Presentation: These study data were presented in preliminary form at the 91st Annual Meeting of The Endocrine Society; June 11, 2009; Washington, DC.

Additional Contributions: Liesbeth Ruuygrok, PhD, oversaw preparation of the levthyroxine and placebo capsules and randomization of the patients. Maasstad Hospital Rotterdam laboratory technicians processed the blood samples, and employees of the Department of Internal Medicine assisted with patient assessment. We thank the patients who participated in this study for their cooperation.

REFERENCES

Call for Photographs

The Archives is seeking photographs to be included as fillers in our journal. We believe that our readers may be an excellent source of interesting and thoughtful photographs. If you would like us to consider your photograph for publication, we invite you to submit your photograph to our Web-based submission site under the category Images From Our Readers at http://manuscripts.archinternmed.com. Please upload photograph submissions in .jpg or .tif format. Hard copy photographs are not acceptable. For more information please e-mail archinternmed@jama-archives.org.